亚洲欧美国产97综合首页,久久丝袜精品综合网站,精品国产电影久久九九,国产一区二区免费精品

  • <small id="kosyt"><tbody id="kosyt"><small id="kosyt"></small></tbody></small>

          <td id="kosyt"><ins id="kosyt"><label id="kosyt"></label></ins></td>
        1. <source id="kosyt"><ins id="kosyt"></ins></source>
               登錄    注冊
            

          斯坦福大學(xué)英文版機(jī)器學(xué)習(xí)視頻教程下載

          • 贊助費(fèi):¥5元   在線客服:有事聯(lián)系我哦     點擊這里給我發(fā)消息    itying微信客服    交流群:it營
          • 課程講師: Andrew Ng
          • 適合人群: 初級
          • 更新程度: 完成
          • 主要技術(shù): 機(jī)器學(xué)習(xí)
          • 用到技術(shù): 機(jī)器學(xué)習(xí)
          • 瀏覽次數(shù): 2423 次     付款后在訂單列表獲取下載地址

          瀏覽歷史

          課程描述

          相關(guān)課程

          還購買過

          斯坦福大學(xué)英文版機(jī)器學(xué)習(xí)視頻教程下載

           

           

           

           

          課程介紹:

           

          機(jī)器學(xué)習(xí)是一門讓計算機(jī)在非精確編程下進(jìn)行活動的科學(xué)。在過去十年,機(jī)器學(xué)習(xí)促成了無人駕駛車、高效語音識別、精確網(wǎng)絡(luò)搜索及人類基因組認(rèn)知的大力發(fā)展。機(jī)器學(xué)習(xí)如此無孔不入,你可能已經(jīng)在不知情的情況下利用過無數(shù)次。許多研究者認(rèn)為,這種手段是達(dá)到人類水平AI的最佳方式。這門課程中,你將學(xué)習(xí)到高效的機(jī)器學(xué)習(xí)技巧,及學(xué)會如何利用它為你服務(wù)。重點是,你不僅能學(xué)到理論基礎(chǔ),更能知曉如何快速有效應(yīng)用這些技巧到新的問題上。最后,你會接觸到硅谷創(chuàng)新中幾個優(yōu)秀的涉及機(jī)器學(xué)習(xí)與AI的應(yīng)用實例。此套英文版機(jī)器學(xué)習(xí)視頻教程包括視頻和源碼,需要看英文版的朋友可以學(xué)學(xué)。

           

           

          斯坦福大學(xué)英文版機(jī)器學(xué)習(xí)視頻教程目錄介紹:


          1 - 1 - Welcome (7 min).mkv
          1 - 2 - What is Machine Learning_ (7 min).mkv
          1 - 3 - Supervised Learning (12 min).mkv
          1 - 4 - Unsupervised Learning (14 min).mkv
          2 - 1 - Model Representation (8 min).mkv
          2 - 2 - Cost Function (8 min).mkv
          2 - 3 - Cost Function - Intuition I (11 min).mkv
          2 - 4 - Cost Function - Intuition II (9 min).mkv
          2 - 5 - Gradient Descent (11 min).mkv
          2 - 6 - Gradient Descent Intuition (12 min).mkv
          2 - 7 - GradientDescentForLinearRegression  (6 min).mkv
          2 - 8 - What_'s Next (6 min).mkv
          3 - 1 - Matrices and Vectors (9 min).mkv
          3 - 2 - Addition and Scalar Multiplication (7 min).mkv
          3 - 3 - Matrix Vector Multiplication (14 min).mkv
          3 - 4 - Matrix Matrix Multiplication (11 min).mkv
          3 - 5 - Matrix Multiplication Properties (9 min).mkv
          3 - 6 - Inverse and Transpose (11 min).mkv
          4 - 1 - Multiple Features (8 min).mkv
          4 - 2 - Gradient Descent for Multiple Variables (5 min).mkv
          4 - 3 - Gradient Descent in Practice I - Feature Scaling (9 min).mkv
          4 - 4 - Gradient Descent in Practice II - Learning Rate (9 min).mkv
          4 - 5 - Features and Polynomial Regression (8 min).mkv
          4 - 6 - Normal Equation (16 min).mkv
          4 - 7 - Normal Equation Noninvertibility (Optional) (6 min).mkv
          5 - 1 - Basic Operations (14 min).mkv
          5 - 2 - Moving Data Around (16 min).mkv
          5 - 3 - Computing on Data (13 min).mkv
          5 - 4 - Plotting Data (10 min).mkv
          5 - 5 - Control Statements_ for, while, if statements (13 min).mkv
          5 - 6 - Vectorization (14 min).mkv
          5 - 7 - Working on and Submitting Programming Exercises (4 min).mkv
          6 - 1 - Classification (8 min).mkv
          6 - 2 - Hypothesis Representation (7 min).mkv
          6 - 3 - Decision Boundary (15 min).mkv
          6 - 4 - Cost Function (11 min).mkv
          6 - 5 - Simplified Cost Function and Gradient Descent (10 min).mkv
          6 - 6 - Advanced Optimization (14 min).mkv
          6 - 7 - Multiclass Classification_ One-vs-all (6 min).mkv
          7 - 1 - The Problem of Overfitting (10 min).mkv
          7 - 2 - Cost Function (10 min).mkv
          7 - 3 - Regularized Linear Regression (11 min).mkv
          7 - 4 - Regularized Logistic Regression (9 min).mkv
          8 - 1 - Non-linear Hypotheses (10 min).mkv
          8 - 2 - Neurons and the Brain (8 min).mkv
          8 - 3 - Model Representation I (12 min).mkv
          8 - 4 - Model Representation II (12 min).mkv
          8 - 5 - Examples and Intuitions I (7 min).mkv
          8 - 6 - Examples and Intuitions II (10 min).mkv
          8 - 7 - Multiclass Classification (4 min).mkv
          9 - 1 - Cost Function (7 min).mkv
          9 - 2 - Backpropagation Algorithm (12 min).mkv
          9 - 3 - Backpropagation Intuition (13 min).mkv
          9 - 4 - Implementation Note_ Unrolling Parameters (8 min).mkv
          9 - 5 - Gradient Checking (12 min).mkv
          9 - 6 - Random Initialization (7 min).mkv
          9 - 7 - Putting It Together (14 min).mkv
          9 - 8 - Autonomous Driving (7 min).mkv
          10 - 1 - Deciding What to Try Next (6 min).mkv
          10 - 2 - Evaluating a Hypothesis (8 min).mkv
          10 - 3 - Model Selection and Train_Validation_Test Sets (12 min).mkv
          10 - 4 - Diagnosing Bias vs. Variance (8 min).mkv
          10 - 5 - Regularization and Bias_Variance (11 min).mkv
          10 - 6 - Learning Curves (12 min).mkv
          10 - 7 - Deciding What to Do Next Revisited (7 min).mkv
          11 - 1 - Prioritizing What to Work On (10 min).mkv
          11 - 2 - Error Analysis (13 min).mkv
          11 - 3 - Error Metrics for Skewed Classes (12 min).mkv
          11 - 4 - Trading Off Precision and Recall (14 min).mkv
          11 - 5 - Data For Machine Learning (11 min).mkv
          12 - 1 - Optimization Objective (15 min).mkv
          12 - 2 - Large Margin Intuition (11 min).mkv
          12 - 3 - Mathematics Behind Large Margin Classification (Optional) (20 min).mkv
          12 - 4 - Kernels I (16 min).mkv
          12 - 5 - Kernels II (16 min).mkv
          12 - 6 - Using An SVM (21 min).mkv
          13 - 1 - Unsupervised Learning_ Introduction (3 min).mkv
          13 - 2 - K-Means Algorithm (13 min).mkv
          13 - 3 - Optimization Objective (7 min)(1).mkv
          13 - 3 - Optimization Objective (7 min).mkv
          13 - 4 - Random Initialization (8 min).mkv
          13 - 5 - Choosing the Number of Clusters (8 min).mkv
          14 - 1 - Motivation I_ Data Compression (10 min).mkv
          14 - 2 - Motivation II_ Visualization (6 min).mkv
          14 - 3 - Principal Component Analysis Problem Formulation (9 min).mkv
          14 - 4 - Principal Component Analysis Algorithm (15 min).mkv
          14 - 5 - Choosing the Number of Principal Components (11 min).mkv
          14 - 6 - Reconstruction from Compressed Representation (4 min).mkv
          14 - 7 - Advice for Applying PCA (13 min).mkv
          15 - 1 - Problem Motivation (8 min).mkv
          15 - 2 - Gaussian Distribution (10 min).mkv
          15 - 3 - Algorithm (12 min).mkv
          15 - 4 - Developing and Evaluating an Anomaly Detection System (13 min).mkv
          15 - 5 - Anomaly Detection vs. Supervised Learning (8 min).mkv
          15 - 6 - Choosing What Features to Use (12 min).mkv
          15 - 7 - Multivariate Gaussian Distribution (Optional) (14 min).mkv
          15 - 8 - Anomaly Detection using the Multivariate Gaussian Distribution (Optional) (14 min).mkv
          16 - 1 - Problem Formulation (8 min).mkv
          16 - 2 - Content Based Recommendations (15 min).mkv
          16 - 3 - Collaborative Filtering (10 min).mkv
          16 - 4 - Collaborative Filtering Algorithm (9 min).mkv
          16 - 5 - Vectorization_ Low Rank Matrix Factorization (8 min).mkv
          16 - 6 - Implementational Detail_ Mean Normalization (9 min).mkv
          17 - 1 - Learning With Large Datasets (6 min).mkv
          17 - 2 - Stochastic Gradient Descent (13 min).mkv
          17 - 3 - Mini-Batch Gradient Descent (6 min).mkv
          17 - 4 - Stochastic Gradient Descent Convergence (12 min).mkv
          17 - 5 - Online Learning (13 min).mkv
          17 - 6 - Map Reduce and Data Parallelism (14 min).mkv
          18 - 1 - Problem Description and Pipeline (7 min).mkv
          18 - 2 - Sliding Windows (15 min).mkv
          18 - 3 - Getting Lots of Data and Artificial Data (16 min).mkv
          18 - 4 - Ceiling Analysis_ What Part of the Pipeline to Work on Next (14 min).mkv
          19 - 1 - Summary and Thank You (5 min).mkv
          pdf
          ppt
          中英文字幕.rar
          如何添加中文字幕.doc
          教程和筆記
          機(jī)器學(xué)習(xí)課程源代碼

           

           


          斯坦福大學(xué)英文版機(jī)器學(xué)習(xí)視頻教程部分資料截圖展示:

           

           

           

           

           

           

           

           

           

           

          IT營(itying.com)官網(wǎng)轉(zhuǎn)載的文章、圖片等資料的版權(quán)歸版權(quán)所有人所有,因無法和版權(quán)所有者一一聯(lián)系,如果本網(wǎng)站選取的文/圖威脅到您的權(quán)益,請您及時和IT營站長聯(lián)系。
          我們會在第一時間內(nèi)采取措施,避免給雙方造 成不必要的損失。IT營(itying.com)官網(wǎng)商品均為虛擬商品,因發(fā)貨后無法收回,故購買后不支持退款,請悉知。有問題可以聯(lián)系客服咨詢(客服上班時間:8:00-21:30)。

          在線客服:點擊這里給我發(fā)消息      點擊這里給我發(fā)消息      有事聯(lián)系我哦   

          公安備案:鄂公網(wǎng)安備 42050202000392號  ICP備案證書號:鄂ICP備17020565號-1